Benchmark problems for Caputo fractional-order ordinary differential equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales

‎In this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1

متن کامل

existence of solutions of boundary value problems for caputo fractional differential equations on time scales

‎in this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{t}^{kappa^{2}}}:=j,;;1

متن کامل

Order Ordinary Differential Equations

The DI methods for directly solving a system ofa general higher order ODEs are discussed. The convergence of the constant stepsize and constant order formulation of the DI methods is proven first before the convergencefor the variable order and stepsize case.

متن کامل

Boundary value problems for higher order ordinary differential equations

Let f : [a, b] × R n+1 → R be a Carathéodory's function. Let {t h }, with t h ∈ [a, b], and {x h } be two real sequences. In this paper, the family of boundary value problems´x is considered. It is proved that these boundary value problems admit at least a solution for each k ≥ ν, where ν ≥ n + 1 is a suitable integer. Some particular cases, obtained by specializing the sequence {t h }, are poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2017

ISSN: 1314-2224,1311-0454

DOI: 10.1515/fca-2017-0068